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RADIATION BY A UNIFORMLY ROTATING 

LINE CHARGE IN A PLASMA1 

by 

Stanley C.  Gianzero,  Jr. 

Polytechnic Institute of Brooklyn 

SUMMARY 

A theoretical investigation is conducted for the radiation produced 

by a linear distribution of electric charge executing circular motion both 

inside and outside a cylindrical plasma column.    The analysis includes 

the effects of compressibility and ani otropy of the plasma upon the 

radiation characteristics of the charge distribution. 

In the incompressible isotropic case,  a dipole resonance 

phenomenon is exhibited for the first harmonic of the angular frequency 

of rotation of the charge when the charge mcves at non-relativistic 

velocities.    If the charge moves at extremely small velocities,  the 

resonance becomes a singularity.    The influence of compressibility 

upon these radiation characteristics is discussed and is shown to be 

negligible.    In the case of the presence of a magnetic field,  i. e.  for 

an anisotropic plasma,  the dipole resonance is shifted.    Moreover,   a 

multipole resonance is possible for a sufficiently higher order harmonic. 

This research was initiated under Contract No.   Nonr 839(34) and com- 
pleted under Contract No.   Nonr 839(38) for PROJECT DEFENDER,   and 
was made possible by the support of the Advanced Research Projects 
Agency under Order No.   529 throught the Office of Naval Research. 

* Formerly at the Polytechnic Institute of Brooklyn;   currently with the 
Raytheon Missile Systems Division,   Bedford,   Massachusetts. 



Furthermore,  in a frequency range just above this multipole resonance, 

Cerenkov radiation contributes to the existent Brems stahlung radiation 

for a single harmonic in the neighborhood of the singularity of the index 

of refraction.    Thereafter, the radiation contributions of the remaining 

harmonics is negligible. 
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SEC TION I 

INTRODUCTION 

t-ts 

The current interest in radio communication wita space vehicles 

has stimulated the study of wave propagation in a plasma.   Such a study 

is of importance in providing a knowledge of both the possible wave types 

which the plasma admits and their means of excitation.    Extensive research 

on these topics has produced papers which study the plasma both in the 

absence and presence of localized electromagnetic sources. 

Studies of the plasma in the absence of localized electromagnetic 

sources are conducted for the sole purpose of obtaining the possible types 

of waves which propagate in a plasma.    The usual method for obtaining these 

wave types is through a macroscopic hydrodynamic approach, which 

couples the linearized Euler equations of motion with the linearized Maxwell 

equations of electrodynamics.   Allis and Papa  '    and Stix , in studying both 

compressible and incompressible plasmas with and without a static 

magnetic field,  classified these wave types in terms of normal wave 
4 

surfaces.    Oster    examined the same caees but also from the point of view 

of a microscopic gas treatment,  using the Boltzmann equation with the 

Maxwell equations.    The importance of this paper is that it demonstrates 

the validity of both the macroscopic and microscopic approaches. 

Having thus considered the methods of approach, it is now desirable 

to discuss more fully the results of these papers.    Firstly, in the case of an 

incompressible isotropic plasma, the plasma behaves as a dielectric, with 

one exception: the phase velocity of the electromagnetic waves is greater 

than the velocity of light in free space.    This wave type is known as the 

ordinary optic mode of propagation.    If,  on the other hand, the plasma is 

compressible,  it retains its isotropy but admits an additional wave type,  a 

longitudinal wave which propagates at the speed of sound. 



A more complex situation occurs if a static magnetic field is 

applied to an incompressible plasma.    In such a situation,  the plasma may 

be viewed as an anisotropic medium possessing a tensor dielectric 

permeability.    Its principal waves are separated into either of two classifi- 

cations,  depending upon whether they are propagated along or across the 

magnetic field direction.    The transverse electromagnetic waves (T.E.M,), 

which propagate along the direction of the magnetic field,  decompose 

naturally into right and left circularly polarized waves.    This natural 

decomposition is the basis for Faraday rotation which has application in 

optics.    The transverse electric (T.E.) and transverse magnetic (T. M.) 

waves, those waves which propagate perpendicular to the magnetic fie'd, 

comprise the second of the ivo classifications.    The T.E.  wave 

characteristics are identical to the isotropic plasma waves mentioned 

previously.    However, the T.M. waves, which are a consequence of the 

anisotropy of the plasma,  are called the extraordinary waves of propagation 

because of their resemblance to the extraordinary w^ves in double refracting 

crystals in optics. 

When a static magnetic field is applied to a compressible plasma, 

the T.E.M. waves are modified slightly,  these and the longitudinal plasma 

wave remaining uncoupHd.    However,  in the case of propagation perpendicular 

to the field,  the extraordinary wave is coupled to the plasma wave. 
5 

Seshad'n   ,  exciting this same wave type (the extraordinary wave) did not 

expound upon the coupling phenomenon.    It is the intention of this paper to 

interpret the radiated spectrum of energy more readily,  by precisely 

clarifying this wave coupling.    It may be considered from this brief s     v 

of the literature that the source free case has been otherwise sufficiently 

explored,  and so it shall not be the intent of this paper to investigate this 

particular area furtb-r1. 

It is now fitting to elaborate upon some of the numerous applications 

of wave propagation properties in plasma diagnostics.    For one,  plasmas 



may be inserted in microwave cavities and wave guides.    Here,  the 

presence of the plasma affects the resonant frequency of the system and 

increases its loss.    From the frequency shift,  the electron oensity can be 

calculated; from the loss, the collision frequency can be calculated.   A 

more refined technique,  involving a dipole resonance phenomenon for 
fi    7 

measuring electron density,  is used by Crawford  '   .    Specifically,  if 

the plasma is a cylindrical column,  thereby possessing a finite dimension 

in the direction of impinging electromagnetic waves, it experiences a 

resonance when the excitation frequency of the plasma is aj= ~s~ .    The 

chief advantage of incorporating a dipole resonance phenomenon,  as 

opposed to studying perturbations of the resonant frequency of a microwave 

cavity, is that trie dipole resonance is a first-order effect.    The author will 

also consider resonances of a dipole type in his configuration.    It is 

speculated that such a configuration, applied to the task of detecting electron 

densities, will yield a greater range of operating frequencies by merely 

adjusting the intensity of the magnetic field external to the plasma.    The 

dipole resonance phenomenon is retained regardless of the consequent 

variation of velocity of the charge distribution, brought about by altering 

the magnetic field intensity. 

An urderstanding of the physical phenomenon occurring in the 

configuration considered by the author can only be obtained through a careful 

study of the radiation produced by localized electromagnetic sources.   Indeed, 

studies of the plasma in the presence of localized electromagnetic sources 

possess, by far,  a great number of interesting physical implications.    The 

author is particularly concerned with the presence of moving sources.   It 

is a well known fact that if a uniformly moving charge distribution moves 

with a velocity which c xceeds the phase velocity of light in the medium,  a 

radiative process called Cerenkov radiation,  exists.    The radiated spectrum 
g 

of this process consists of a continuum of frequencies.      A possible 

application of this radiation process in a plasma is the generation  }r 

amplification of electromagnetic waves in the microwave range.    The 



radiation characteristics of a uniformly moving charge distribution have 

been the subject of many current papers.   Interest in this type of motion, 

particularly from the aspect of Cerenkov radiation, has been considered 

not only by Tuan and Seshadri but is also contacted in the papers of 

Majumdar and Abele. 

9 Tuan and Seshadri's    investigations in this area consisted of a 

determination of the radiation characteristics of a point charge moving 

uniformly along the direction of a static magnetic field of an unbounded 

incompressible plasma.   Here, for the first time, an author expiicitly 

evaluates the multiple Cerenkov rays (which correspond to different 

frequency components) propagating in the same direction. 

10 
Majumdar     ,  still considering the uniformly moving point charge, 

extended their results to include the case of a compressible magnetoplasma. 
5 

Tuan and Seshadri   have also analyzed the radiation produced by the 

rectilinear motion of a line charge in a compressible magnetoplasma where 

the charge moves both along and perpendicular to the direction of an 

impressed magnetic field.    It is in this investigation that they experienced 

the excitation of the coupled modes which the author will discuss more 

fully later. 

Abele      examined the spectral distribution of energy produced by 

a uniformly moving line charge,  not only in the previously studied unbounded 

case, but also in a bounded compressible plasma.    His conclusion that 

radiation is also possib.e for a charge distribution moving outside a plasma 

finds application in the cases to be discussed by the author. 

The subject of sources executing circular motion l^s also received 

considerable attention in current literature.    In the case of circular motion 

of a charge distribution,  the radiation may be confined to certain discrete 

frequencies within a specific range.    In free space,  a rotating point charge 

radiates a spectrum of lines which corresponds to the harmonics of the 
12 angular frequency of motion     .    For non-relativistic velocities of the charge, 



the dominant part of the radiation is confined tc the first few lines of 

the spectrum.    For relativistic velocities, the spectral distribution of the 

radiated energy at first increases with the order of harmonics, reaches a 

maximum, and decreases thereafter. 

A different behavior is expected if the charge rotates in a magneto- 
13 plasma    .    In this case, the medium is highly dispersive and a resonant 

condition is expected.    Moreover,  the significant part of the radiation is 

confined precisely to the particular harmonic where the resonant condition 

exi  *s.    Here,  the process of Cerenkov radiation contributes to the 
14 

ordinary Brems stahlung radiation 

15 
Canobbio     investigated the radiation produced by a density modu- 

lated beam of ions in an infinite plasma for the case where the beam is an 

infinite plane parallel to the static mag letic field,  and for the case where 

the beam is an infinite cylindrical surface parallel to the magnetic field. 

In both situations, he studies resonances in the radiated energy,  as will 

the author of this paper. 

Twiss and Roberts     ,   investigating the radiation produced by an 

electron moving in a circle in an incompressible anisotropic unbounded 

plasma,  showed that of the two modes that are excited (ordinary and 

extraordinary) the radiation is emitted predominantly in the extraordinary 

mode.   Although the corresponding problem of a line charge excites only 

the extraordinary mode, it is now clear that this is the only mode of 

importance in this type of investigation.    The author,  therefore, finds 

justification in considering the two-dimensional problem in preference to 

the three-dimensional one. 

Finally,  extensive research is found in the Russian literature.    Here, 

considerable attention has been paid to the case where the radiation is pro- 

duced by a point charge executing circular motion, but now in a compressible 

unbounded plasma.    It has been found that an appreciable amount of the 



radiated energy can be associated with the longitudinal plasma 
16,17. 18 waves • . 

Having thus considered the contribution of Cerenkov radiation to 

the ordinary Bremsstahlung radiation in the unbounded cases, it is prudent 

to once again mention the fact that if the charge is moving in the vicinity of 

a plasma column, a dipole resonance is anticipated. 

It is clear, from the above synopsis,  that a systematic study of 

the problem of radiation from a rotating line charge in both an unbounded 

compressible plasma and a bounded compressible plasma remains to be 

determined.    This paper, therefore, proposes to fully investigate the 

radiation characteristics of a line charge in the presence of a plasma 

column. 

The author is indebted to Dr.   Manlio Abele for his innumerable 

suggestions,  his erudite opinions,  and his constant guidanc. 



SECTION II 

BASIC EQUATIONS 

The present investigation is conducted for tk2 case of a uniform 

linear distribution of electric charge, oriented parallel to the z axis of 

a cylindrical coordinate system. The charge distribution rotates about 

the z axis (which is parallel to an impressed static magnetic field) with 

a constant angular velocity a   •    q and p    denote the charge per unit length 
•A* 

and the radius of the orbit respectively. '" A cylindrical plasma column of 

radius pi is located within the orbit of the charge distribution,  oriented 

parallel to its axis of rotation.    The boundary of the plasma is assumed to 

be perfectly rigiü; the plasma medium is assumed to be compressible c».id 

lossless.    It is further assumed that the angular frequency of motion of 

the charge distribution is sufficiently large so that the ion motion may be 

neglected.    Finally, the intensity of the electromagnetic field is assumed 

small enough so that the equations of motion may be linearized.    The charge 

distribution produces a current density which may be described as a 

continuous current distribution in the following manner: 

J   =J,= 0    .    j   =JJ qMe-c )6(i t-cp) (2-') 

where 6(p-p  ) and 6{uu t-cp) are Dirac-delta functions.    The cp component 

The fact that the angular frequency of rotation of the charge distribution 
is not synchronized with the cyclotron frequency is not inconsistent, 
since a physical situation can always be realized wherein the intensity 
of the magnetic field outside the plasma differs from the intensity 
inside. 



can be written as, 

lü q m=ao 
j    =—-6(p-p  ) )       e 0 (2-2) 

CD      2TT O L 
m=-CD 

where T is related to the time t and the angular position cp,  as 

T = t-cp/u; (2-3) 
o 

The current density induces in the plasma a density fluctuation, 71; 

an electron motion with velocity components U ,M   ; and ein electromagnetic 
P     ^ 

field with components Ä , 5   .  of the electric field,  and the component ß 
p      5p z 

of the magnetic field. 

The chosen method of solution for the above field quantities requires 

first, a separation of the solution into cylindrical regions about p    and pi. 

Then,  a particular solution of the linearized Maxwell equations and the 

linearized hydrodynamic equations for Jj-   and 71  (which is consistent with 

the current density j   ) is used to find the remaining field components in all 

regions.    Finally,  the field components are matched at po and pi with the 

aid of specified boundary conditions. 

Thus,  the governing equations inside the plasma medium are, 

|2.+ n V.U   =0 (2-4) 
dt o     ^• 

*lt      ^ 2 

1^ + — Ö+Uxa.    +~V??=0 (2-5) at     m    ~    —     ~c      n 
e o 

V x(5 +M    |^-0 (2-6) 
•*' o ot 

7 xß-e    |£+ n  a  l(= 0 (2-7) 
~       o ot o 'o*" 

where m .and q    are the electron mass and electric charge,   respectively; 
*- o 



n   is the equilibrium value of the electron density 7l'> a is the speed of 
o 

sound of the electron gas of equilibrium temperature,  T   ,  given by, 

4 
a = (Y kT   /m  V (2-8) 

o     e 

Also,  k is the Boltzmann constant; and y is related to the number of 

degrees of freedom, I, of the electron adiabatic motion through the 

equation, 

Y = {l+Z)/l (2-9) 

€  ,|j   are the dielectric and magnetic permeabilities of free space, 

respectively; 6, Jl are the intensities of the electric and magnetic fields; 

and Ü is the electron macroscopic velocity.    Finally,  the magnitude of the 

cyclotron frequency m   is given by, 

M q J^ 

c m e 

A particular solution of the governing equations for the field 

components,  which is consistent with the current density, is, 

m = oo 
Ö(D,CM)= £      Am(0)e-ima,oT (2-11) 

m = -oo 

By virtue of Eq.   (2-11),  the governing equations (2-4),   (2-5). (2-6), 

and (2-7) may be written ^n the following component form. 

■imuu N     + n 
o   m      o 

, d(pU_) 
fiUL + HSlu 

do p      cpm 
= 0 (2-12) 

q a dN 
■ imuu U       +—E       fuj U       +^--—21=0 (2-13) 

o   pm    me   pm      c   cpm    n      dp 

q 2 

imuu U       +—E       -uu U       +iI2^-N     =0 (2-14) 
o   cpm   rne    cpm      c   om     n p      m 



p dp {p   ym        p      om oTo   zm 
(2-15) 

i^H      +imuj e E      +n Q UäTYI = 0 
p      zm o o   pm     o o   pm 

dH 
. —£121 + im     €E       +nqU        =0 

dp mo o  cpm      oHo   cpm 

(2-16) 

(2-17) 

Solving Eqs.  (2-13) and (2-14) for the velocity components, 

gives 
dN       irnou 

n q U       =—j _ 
o o   orr.   m Oü  -UJ 1 o    c 

(2-18) 

mai») dN 

noqo  Cpm   maa)"-üü'   I op 
i—rit U)3[-imoü E      +^E      ]+q a3[—-^N   +UJ  -~a-] • 
i  -tu   I op o   ^m    c   pm      o p        m    c   up    J 

(2-19) 

where the plasma frequency is defined as, 

n q 
a  _    o o 

P      V^e 
(2-20) 

Substituting Eqs.  (2-18) and r     *?) into (2-16) and (2-17), and solving for 

the transverse field components E       and E       in terms of the longitudinal pm cpm 
field components H        and the electron density term N    ,  yields. 

zm 

'pm'e   k2     k3, H o   sm   tm 

.2...    1,2 q m3a) uu                          dN       m^'ju   k' 
o     _o_cN^+q>3     _jn    0Tram 

uu 

pc 
2 mo   om dp pc' H   -:££ 

tu8 dH zm 
zm   a c*   dp 

(2-21) 

>m = e   k3     k^ 
^ o   sm   vm 

™%Km %m*o*c dV   m^v  H        ^ofam dH
Zm 

N     + ä dp      "    pa2c2    nzm-     ^5 dp m c 

10 

(2-22) 



where c = \ I JyT?.    is the speed of light in free space.    The propagation 

constants k      ,  k     are given in terms of k      ,  k       as follows: 
sm      m om      am 

k3     +k2 ,    / 4a;s()ü3 

a      _     om     am ,   1 
+ T./ ^-*\)* +'-iLr (2-23a) sm 2 2V  '"om   "am'       a2c3 k 

k*    +k3 ,    r 4a)3 uu3 

where k      ,  k       are given by, 
am      om 6 ' 

2    2        3 m or -UU 
ka      = -y—^ (2-24) 

om c 

a    3       3       3 m uu  -uu   -UU 

k3      = 0  aP    C (225) 
am a 

The propagation constant k       is the ordinary optic mode of an 

isotropic plasma,  and k       is the corresponding acoustic mode which is 
am 

modified somewhat due to the presence of the magnetic field. 

Because of their complexity, the propagation constants defined by 

Eqs.  (2-23) warrant explanation and, therefore, a slight degression from 

the present discussion is desirable.    It must be recalled from Section I 

that in a compressible,  anisotropic plasma,  the extraordinary electro- 

magnetic mode of propagation is coupled to the acoustic mode of propagation. 

Equation (2-23) is a statement of this physical phenomenon.   A clear under- 

standing of this mode coupling can be obtained from a study of the 

corresponding indices of refraction.    In such a consideration, the excitation 

frequency muu   is assumed to be equal to u)i a continuous variable, and 
o 

therefore the subscript m will be omitted in all the defining relations.    If 

it is further assumed that the speed of sound in the electron gas is much 

smaUer than the speed of light,  the propagation constants k    and k    , 
S v 

a 



corresponding to Eq.  (2-23), may be approximated as follows; 

s        a     a^c* k2  + 4k* 
a a 

k» = ka +_£"c- 0 

(2-26) 
k4 

kf = ka  ^ —%- 
t        e     4k'i 

a 

where k8  - ^g-' ^ " 8 '    is the extraordinary mode of propagation for an 

incompressible, anisotropic plasma described by a tensor dielectric 

permeability.    The tensor dielectric permeability being defined as. 

€i        x €a 

€ = I   -iea    €i 0     I (2-27) 

where 

tx - 1  -    a 
m    - 

2 
(1) 

C 

£2 

a 
ÜÜ   'S) 

c   P 
(^-uu3)* c 

€, 

(2-28) 

UÜ 

It is important to note that the previous approximations in 

Eq.  (2-26) are valid for ail frequencies except those frequencies which 

satisfy the following relation: 

0.2 .^ „^2  20 (2.29) 
P      c 

12 



Figure i  is a plot of the indices of refraction,  corresponding to Eqs.   (2-23) 

and their approximate forms [Eqs.   (2-26)] for arbitrary values of non- 

dimensionalized frequency D/X  .    Thasc results show that a reasonably 

good approximation to the coupled propagation constants may be obtained 

by merely retaining the first terms in the expansions in Eq.  (2-26). 

Specifically, 

k    _ k 
s e 

k        k 
'        a 

and (2-30) 

k   - k 
s        a 

k        k 
*.        o 

It is evident that in this approximation the region defined by 

strong coupling actually comprises only a narrow r* nge of frequencies 

which separate the entire frequency spectrum into two ranges, wherein 

the modes are effectively uncoupled.    Moreover,  the coupled propagation 

constants assume alternate roles in these ranges of frequency.    Specifically, 

for low frequencies,   k   behaves as the extraordinary mode of propagation s 
of an incompressible,  anisotropic plasma, where as k     behaves as a 

modified acoustic mode of propagation of a compressible plasma.    For 

high frequencies,  a reversal is evidenced,    k    now behaves as the 

modified acoustic mode and  k    behaves as the ordinary optic mode of 

propagation.    It is interesting to note that this switching of modes occurs 

precisely in the frequency range where a singularity of the index of 

refraction would exist if the plasma were incompressible.    The results 

of this interesting phenomenon will be applied to one of the cases to be 

discussed later. 

Returning to the previous discussion,  the velocity components 

13 



U        and U      ,  correspondint, to iCqs.   (2-21) and (2-22),  are found by 
ri m cpm 

subst     MngEqs.  (2-21) and (2-22) into Eqs.   (2-18) and (2-19).    Then, 

simpliiying them yields, 

U 
Pm   k^     k3

# srn   Im 

m3 uua uu 
o c 

muu   k dN ma) a vs 

n c" p 
o 

'   ,     ,        o   om       ni p   om *N    + . . —-— 
m n dp 

H 
n q a' A     vsm 

o  o 

muu  ii> uu 
o c 

n q aac 
o o 

3   dH 
zm 

dp 
(2-31) 

cpm    k sm   Im 

m üü  k 
o   om 

m2uüaüü    dN        mau) uu uu2 

o c       m oc   p 

n
0

p 

N    +- 
m      n c 

H 
dp        n q a3c3p    zm 

o o 

x3 k3       dH 
p   om        zm 

n q a3     dp 
o Io 

(2-32) 

The equations which the longitudinal field c mponents satisfy are found 

by substituting Eqs. (2-21), (2-22), (2-31), anc' (2-32) into Eqs. (2-12) 

and (2-15).    Then, after some simplificatior.;, 

k3 

am 
q UJ 

o c P dp 

dH 
zm 

dp 

m3 cc3 

o 
x-2k3 3 p   om    nfi< 

a3 ka      ■ p3 

am 

dN 
H 

zm 
1   d 
p dp I     dp 

m m 

P 
■N    1=0 

ml 

(2-33) 

7  a3c3k3 

'o om 

c  p 
f dp 

dN 
m 

dp 

2 
m  x 

.2 u2 

2        ou3 k 
o   am 

om 

m 

7 N 
m 

LA. 
P dp 

dH 
zm m 

dp 
H = 0 

zm 
(2-34) 

The above equations can be uncoupled by first assuming the 

solutions to b    linear combinations of N     and H       with arbitrary coefficients, 
m zm 

U 



These coefficients are th^n adjusted to yield tw :> separate Bessel equations 

in the assumed solutions. ^   The result is 

N 
m 

(k5 ~5—r\(k*    -k2,    )b.    J    (k      p). 
-k\     )   1     om      ln\   im m     Im 

Im sm     /„m 

(ka     -k2     )a.    J    (k      p) 
ova     sm   im m    sm I     P < 01 

;      pi  < p < oo 

(2-35a) 

(2-35b) 

q uu 
o c 

(k3    -k8,    ) sm      -tm 
fa     J 
[ im (k      D)-b.    J    (k 

m     sm        im  m -t m    J 01 (2.36a) 

H 
zm 

a/   J    (k    pHa'   Y    (k    p) 
im m    m im   m    m ; Di <0< Oo      (2-36b) 

a      H^^k    p) 
em   m     m ; Do <o <00       (2-36c) 

(i) 
where J    ,  Y    , and H      are the Bessel, Neumann,  and Hankcl functions 

m       m m 
respectively; and a.    , b.    ,  a'   ,  a.'    ,  and a       are the constants of 

inn      im      im      im em 
integration which are to be determined from the boundary conditions at 

p    and pi.    Note that the magnetic field components in the regions outside 

the plasma column have been obtained from the solutions of Eq.  (2-33) 

in the limit of UJ   =0.    Also, the propagation constant k      in these regions 
p m 

is defined as 
mi) 

k      =  (2-37) 
m       c 

It is important to mention that the Hankel function of the first kind 

has been chosen in order to insure outgoing waves for positive and 

See Appendix for explicit calculation. 
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negative m for the specified tirr. dependence.    The transverse field 

components in all regions can now be obtained by substituting Eq.  (2-35a) 

and Eq.  (2-36a) into Eqs.  (2-21) r.nd (2-22),  and then by substituting the 

remaining equations in (2-3f) and (2-36) into Eqs.  (2-21) and (2-22) in 

the limit of UJ   =0. 

-<1, 

€  (k3     -kf     ) 
o    sm     lm 

im 

m3üü uu (ks    -k3    ) 
 o c        . om     sm    T/ ., 
oc K m    sm k m    sm 

sm sm 

-b. 
im 

mauj uu o c 
(ka -k3  ) 

-^    J   (K    o)+-2^-L2L-J/{k     o) 
oc  K       m     im Km m     /,m 

cm ^.m 
I] j   : P < Pi 

-m3^ M 

E      =< 
pm   * pk 

2-£ja/   J    (k.   p) + a."   Y    (k    p)]   ;     pi 
L im m    mv       im   m    mK J < 0 < P. 

r 

•m3m   |i 
o  o »»(x),,        v 

"7^3 a„„,H'  <kt«
p)    ;    on<P<<x> p K em   mm o 

m 

(2-38a) 

(2-38b) 

(2-38c) 

imq 
o 

€   (k^      -kS
f      ) o    sm      tm 

im 

(k3     -k3    ) a> üü 
om     sm   T    ,, .  .     o c     T / ., . 
 TlZ  Jr«(k

aWP)   T^T   J«(k
Cr«P) 

p k m     snn        c   k n.     sm 
sm sm 

im 

(k3     -k3     )     • UJ uu 
om      cm   T    . . . ,      o c     , / / , v 
 ' Jm(ktmC,+?T—■'m^tm0' 

m cm • L "S, 
; P<OI 

(2-39a) 

imit u 
E      =-<   - 

cpm    ^ 

M    r 1 
-2-£    a'   J' (k    p)+a:'   Y^k    p)     ;   pi  < p < p (2-3%) 
: im m    m im   mm! o 
m      L "• 

.  0 0  a      H(1)  (k    o)     :     p    < p < oo 
k em   mm o 
m 

(2-39c) 

Note that all derivatives of the Bessel functions are taken with respect 
to the entire argument. 
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The necessary boundary conditions which are to be used for the 

evaluation of the constants of integration when expressed in terms of the 

total field components arc 

ß M .   z.. 
1 

= 0 

5M 
i 

= 0 

a0-~o * 

0 = 01 (2-»0) 

k]e   -Ul^-lim   PJ   V 

kl. -kL=o 
6-0   e-6 

0 lo=fi (2-41) o 

where the subscript i represents the region defined by p <0l; the primed 

subscript i    represents the region defined by QI <o<p   ; and the subscript 

e represents the region defined by p   <p<co. 

The previous conditions can also be expressed in terms of the 

harmonic field components as 

[H    ]    -[H    1=0 
L   "-mj. /      L   zmJ. 

i i 

[vL- [
E
Ü.

=o ) ;p=pi (2-42) 

u      = 0 
fm 

This dynamical boundary condition,  which is a consequence of a rigid 
wall,  is used only in the compressible plasma cases. 
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k 1 -f» ] =- t   zmj L   zmj./ 

IE      I - JE              = 0 
t  fipmj L   vpmJ. / 

uu q 
o       \ 

2TT 

? = P, .(2-43) 

Conditions (2-42) and (2-43) lead to the following system of equations: 

q U) 

im m    m xm   mm (k       -k.     ; 
sm     •cm 

[a.    J    (k      px)-!).    J    (k      px)] = 0 
im m    sm im m     ^m 

(2-44) 

q k 
o   m 

C<m
J^(k

m
Pl)+ai'mYm(k

m
Pl)] -/k^ k"      ) im m    m im   mm \ K      - K       J 

sm     -tm 

rca(ka     -k2     ) 
om      sm 

inn 

uu 

m px k3 
oyi    sm 

J    (k      px) + 
m    sm 

c     T/ 
J    (k.„Px), k m    sm 

sm 

+ b. 
im 

ca(ka     -ka      ) ÜÜ 

—nrs JrJ S n^) + k— Jm
{k/ m

px) 
(U  pi k ,__ m    v m Kj     m    -t, n^ 

o        -Cm tm 
= 0 

(2-45) 

[a.'   J    (k   pxHar   Y    (k    pi)] 
xm m    m im   m    m 

q   k2 

o   m 
(k3     - k2.     ) 

sm      cm 

xm 

ÜÜ 

ka 

sm 
J    (k       0!) + 

m     sm 

pxc^k2     -k3     ) 
om     sm    x / ,, v 

—rs—z J  (kerY,pi' m uu   ^ nn    s m 
o   sm 

im 

uu Dlc
a(k3      -k3      ) 

om     Im     ../ 
a      J^<kj«,Pi)+—ZXT^ ^ii~'J_(ki_Pi) k3.        m     -tm 
-tm 

m tu o   C m 
m    ^ m 

= 0 

(2-46) 

18 



a      H(l)(k    p  )-[a./   J    (k    p  )+a."   Y    (k    p  )] - --7- 
em   m     m  o im  m     m  o      im   m    m  o Zrr (2-47) 

a      H(l)'(k    p  )-[a./   J' (k    p   )+aA    Y' {k    D  )] s 0 (2-48) 
em   jn       m  o        im m    m  o      im   m     m  o 

Normally,  the above equations would be solved for the constant of 

integration,  a      ,  since the field quantities [see Eqs.   (2-36c) and (2-39c)], 0 em 
where the radiation is to be evaluated,  involve only this constant.    However, 

an explicit evaluation of a        will be temporarily postponed. 
em 

In order to obtain W,  the power radiated by the ^harge distribution 

per unit length,  the flux of the Poynting vector upon a cylinder of unit 

height at an arbitrary radius 0 > p   ,  coaxial with the z axis,  will be 

evaluated from Eqs.   (2-36c) and {2-39c).    Rewriting the necessary 

field components 

m=oo 

W Y      a      H^k    p)e-im!JJoT (2-49 
L, em   m      m 

e 
m = -oo 

n=ao 

kl - ■'* ^  y -,,- * H<I)'<I< ='e'inii°T       <2-5<" Cp 00       L,       k       en   n n 
«-Je n 

n = -CD 

Then. 

2TT 
W
 = J 44kJedc 

2TT      m = oo n^ao                            . .                , %                 ... 
■Juu |a 0                ) )      ,— a    a      H       (k  o)H     (k    p)e                  0   dco 

00,]          L, L    *■        en  em  n         n               m 
m--ao n = -ao                                                                                         (2-51) 

It is apparent that the integration over the angle cp is non-vanishing 
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only for m = -n.    Thus,  the aouble sum reduces to the following single 

sum; 

m=oo 
W^-ZmuuMD )      ,—a        a      H(l)Vk    D^^^k   e) (2-52) 

o  o Lk    k      e-m em    -m       mm    m 
m 

m--CD 

where use was made of the fact that k      =-k    . 
-m       m 

If the sum is now divided into two sums for positive and negative m 

respectively,  and the negative sum is converted into a positive sum by 

replacing +m by -m wherever it occurs,  the result is, 

m=oo 

W = -2raa' M  p       y  T^a        a      CH{l)/(-k    D)H(l)(k    p) + 
o o L,  V.     e-m  em     -m       mm    m 

H{l)/(k   p)HW (-k   p)] (2-53) 
m = l 

m       m       -m      m 

Finally, 

W = -2TnuüUP       Y   —-a        a      [H(1,(k    p)H(a)/(k    D)-H
(3
V.    p)H(1,'(k    D)]: o o tj,  K        e-m em     mmmm mmmm 

m=l     m 

m=_oo 
m 

■8a) M )      72" a        a (2-54) o o       Z...    k e-m  em 
m = l      m 

since, 

H^k    p)H(S),(k    0,.H(2,(k    D)H<l''(k    p)=-^-   * 
mmmm m     m       m       m rrk   p 

m 

See reference  19. 
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SECTION III 

THE CHARGE DISTRIBUTION OUTSIDE THE PLASMA COLUMN 

The first case to be examined is that of an incompressible,  isotropic 

plasma column.    Here,  it is assumed that the thermal velocity of the elec- 

trons and the intensity of the magnetic field in the plasma are vanishingly 

small.    Thus,   Eqs.  (2-44) through (2-48).  which are a result of the 

boundery conditions,   reduce to the following. 

lu!   J    (k   px)+a!    Y    (k   pi)]-a.    J    (k      Pi)   =   0 (3-1) im m%   m1'       im   mx   mH   ' im mv   om    ' v       ' 

k 
Ca'   J'(k   p^+a!   Y' (k    Pi)]-    "i-a.    J^k     px) = 0 (3-2) im m    m ^ im   m    m k im m    om om 

a      H(l)(k   p   ^[a/   J    {k   p   HaT   Y    (k   p   )]   = ^g^ (3-3)* 
em   m      m o im m    m o'      im   m    m ^ 2TT W

 
J
' 

a      H(1)'k   p   ).[a/   j'(k   p   ) + a:   Y'(k   p   )]   = 0 (3-4) 
em   m      mo im m    mo        im   m    mo 

A simultaneous solution of the above equations for the constant of 

integration   a       ,  the only constant of importance,  results in, em 

- uu p    k   q 
_        o o   m^ a -  r  em 4 

/? A      Y' (k   p   )-J   A     J' (k   p  )" 
e  om   m    m o       m om m    mo 

A om 
U-5) 

where 

om       k       m    om m       TO k m    om        m    m m om 

Equations (3-3) and (3-4) are repeated for sake of completeness. 
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Divect substitution of these results into Eq.  (2-54) gives the expres- 

sion for the electromagnetic radiation outside the plasma column 

üU q3^   m=a:>m[/<rA      )Y' (mß ) - JMA Jj' (m0   )? 
u,   _   .    o       c      \ e  ont   m       c       m om m        c »,  .,» 
W  ~ +     2e L    ■ ^  <3-') 

o   m= 1 A      A om om 

where   3   =—-—   is a measure of the ratio of the charge velocity to the c        c w « 

velocity of light in free space,  and the asterisk denotes the complex con- 

jugate of a quantity. 

If now it is assumed that the charge moves with extremely non- 

relativistic velocities,    3  « 1,  the plasma column sees effectively a uni- 

form static electric field when the dimensions of the orbit of the charge are 

much greater than the plasma column.        Therefore,  the physi-al situation 

approaches the conditions necessary for the pla&ma to exhibit a dipole 

resonance. 

Now for  0  « 1,  the Bessel functions may be approximated for 

small arguments. 

In particular, 

(m 8    ) /_    MJ  7m 

j    {mö)^ £ ;   Y   ^m3  )^~Vm"U- - (3-8) 
* 

*« 

m       c       -.m.    , v m        c        «#    Q   \m 2   (m!) TT(m3   ) 

Applying the approximations of Eqs.  (3-8) to Eq.  (3-7> gives, 

* <f m-=0om(mB  )=- <0'/)o)^^1(^d-), . 
w = -A- L T^h7 Y+1—*—^" l3"9> 

om=l    2"m(m!r     I U    /    p   y ■ 
I I    '*muu ' j 
\ •■ c   J 

See reference (19). 

The appearance of the factor   Pi/C      in Eq.  (3-9) is explicable in terms of 

a scattering cross section. 
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It is evident from an inspection of the above equation that a resonant con- 

dition in the electromagnetic radiation exists for those frequencies which 

satisfy the following relation, 

O 

The significance of this result is realized when comparing it to the 

corresponding free space problem for non-relativistic velocities,  the solu- 

tion of which can be deduced directly from Eq. (3-9) by setting  uu   equal to 

zero. 

The result is, 

0) q2"*;00   m(m3   )9m 

W     --^4-    )  (3-11) 
0       t,'o m=i       ^^m(ml)^ 

A comparison of Eq.  (3-9) with (3-11 ) shows that the energy   W 

radiated at the   mth  harmonic compared to the energy   W        radiated in 

free space at the same harmonic is 

(PI/P fm(-rf-)? 
/  o        m X1 

W     /W     =/l + 2—) (3-12) 
m/    mo ) r ^        1     I 

2 - (■—»-)2 

L        m%   J 

Result (3-3 2) has been obtained for   9 -• 0.    The singularity which is 

found at  üu   = ^2 m t     disappears when the effect o* a small but finite 
P o ^ 

value of B     is included in the analysis of (3.7).    For th i sake of sim- 

plicity,  the subsequent discussion is confined to the fundamental fre- 

quency   (m=l). 

If then,   Eq.  (3-7) is maximized with respect to the independent 

variable,—*- ,   the condition for maximum reduces to the following trans- 
o 

cendental equation exactly, 
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Jx'löJ/v^ai + Y/Cß  U    ^o!   =0 (3-13) 

It is important to note that the above result is also maintained in a 

compressible,  Isotropie plasma as well as in an incompressible,   aniso- 

tropic plasma. 

An insertion of higher order corrections to the Bessel functions into 

Eq.  (3-13) yields the following frequency condition, 

UÜ 
o 

^(Dx/p   f tnYB   (Pi/P   )' 
i        c      /   o c     /   o (3-14) 

Thus,  the maximum is seen to occur at a frequency shifted from the dipole 

singularity in the Oirection of increasing plasma frequency. 

Substituting Eq.  (3-13),  in total,  into Eq.   (3-7) yields, 

(3-15) LwJ max 
oM  c 
E€ o 

fj ̂ (Bc) 

es to 

max 
JW 

2%r 

o      c 

(3-i6) 

The results of a numerical calculation which extends the previous 

case to include relativistic velocities of the charge distribution,   are 

found in Fig.   4.    An inspection of the figure reveals that,  for extremely 

low frequencies,  there are fluctuations in the electromagnetic radiation. 

These fluctuations are attributed to electromagnetic interference phe- 

nomena.    Thus,  when the plasma is overdense.   —ß > 1 ,  the plasma 
o 

acts as a reflector of electromagnetic waves and resoniut conditions are 

found for certain values of the ratio     Pi/p    . 

More significant is the fact that even for almost relativistic veloc- 

ities of the charge,  the radiation experiences a large maximum.    In par- 
ticular,  for   3   =.9   in Fig. 4,   the mnximum radiation is of the order of c 
ten times that of free space.    Furthermore,  the maximum occurs for 

JU 

P 
X' 

hifted slightly from the value -fi.    [This result is consistent with 

24 



Eq.   (3-14)J.    Thus,  it is apparent that the dipole resonance has to be 

expected even at large velocities of the charge distribution. 

The i ffeci of compressibility upon the radiation characteristics 

of the charge distribution will now be examined.    In this case,   Eqs.  (2-44) 

through (2-48) reduce to, 

La.'    J    (k    ol)+ar   Y   (k    ft) ] - a.    J    (k      Pi)  =  0 
im   m    m 1'       im   mx   m1' im mx   om " (3-17) 

q  c3k no       m 
im m     m im.   m    m i) pik3 

L o       am 

,.»i b.    j    (k     pl) 
im m    am 

"   IT22-   ain,Ok
rtTv.Pl> K im  m     om 

om 

La.'   J    (k    Pi Ha!   Y   (k    Px)]   + 
xm mm im   mm 

= 0 

q Picsk2 
0 ^b.    J'(k     Px) 

im m   am m3 uu   k 
o   am 

(3-18) 

m 

,$< 

a.    J    (k      Px) 
r2 im m    om 
vom 

v   r. 

= 0 

a     Hll,(k    p   )-|a./   J   (k    PxUa!   Y   (k    p  )]= - -2_ em  m    m o      1    im m    m im   mm o j       2n 

i     H(1)(k    p  ) - f 
em   mm o      I 

- la!   J'  (k    p ) + a:    Y' (k    p   ) 
im m    m o        im   m    mo !■• 

(3-19) 

(3-20) 

'3-21) 

Simultaneous solution of the above,  for   a      ,  leads to, 
em 

-du p   k    q  Ißlä  JY' (k    p ) -Jiä JJ' (k    P   )3 
o o   mn       e am   m    mo        m am m    m o 

em am 
(3-22) 

* 
In a compressible,   isotropic plasma,    k 

m JU -x 
o     p 

am 

Although the same symbol   k has been used in Eq.  (2-2 5),  no ambi- am 
guity arises since they never appear together. 
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whers 

A       = 2 j    (ko   Pi)J    {k      Pi)Hu (k    Pi)+-^- ^2A      J^k      Pi) 
am     .        ^     «    m       m        m     am        mm 3 om m    am 

K       Pi a C am 
(3-23) 

W  = + 

If Eq.  (3-22) is substituted into equation   2-54),  the result is, 

uu <?&*   m=00   mUZb JY'  (m0 )-.* ^  JJ' (mB   )j 
oc\ e   arn   m       c      m  anTm        c \                 e   am   mem  am m        c i-,   ->A\ ) 5 (3-24) 
2eo       -, A       A 

m=l am  am 

Although it is not explicitly shown in Eq.   (3-24),   there are terms 
uu p 

which are written ^.n terms of the quantity   ß   = ,   which is a measure 

of the ratio of the speed of the charge to the speed of sound in the plasma 

medium.    A physically plausible situation exists when the charge dis- 

tribution moves with highly supersonic and non-relativistic velocities 

(i. e.    3  >> ',  B   « i).    In this case,  the terms with arguments propor- 

tional to   9      may be replaced by their asymptotic forms,   and the term» 

with arguments proportional to  B      may be approximated according to 

Eq.  (3-8). 

The asymptotic form is, 

J    (mS   ) W-=-4r-   cos (mß   - TT/4 - m ^/Z) (3-25) m        a    ^( "mp 1 a 

If the approximations of Eqs.  (3-8) and (3-25) are now applied to 

Eq,  (3-24),   the results reduce to Eq.   (3-9) exactly.    Thus,   it is con- 

cluded,  that the influence of compressibility upon the plasma is to leave 

the radiation characteristics effectively unchanged. 

Having found that the effect of compressibility is negligible,   it is 

now desirable to study T.he incompressible plasma under the influence of a 
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magnetic field.    That is,  the intensity of the magnetic field in the plasma 

is now appreciable.    The description of the plasma,   in terms of a tensor 

dielectric permeability,   is now applicable.    Conditions (2-44) through 

(2-48) simplify to the following system of equations. 

La.'    J    (k    pxJ+a'   Y   (kOl)]-a.    J    ( !•     Pi)   = 0 im   m    m im   m    m im m    tm 
(3-26) 

La.'   J ' (k    Pi) + ar    Y' (k    Pi).! 
im m     m im   m    m 

m 

.  em 

a.    J    (k      pi) 
xm m    em 

m , a.    J    (k      Pi) k im m    em em 
= 0 (3-27) 

rO)/ a     Hw(k    p   )-[a./  J    (k    p   )+a:    Y    (k    p   )]   =  -• 
em   m    m  o im m    m  o        im   m    m o 

a     ^(k    p   )-[a/  J' (k    p   )+a!   Y' (k    P   )]   = 0 em   m    mo im m     m  o        im   m    m o 

uu q 
o^ (3-28) 

(3-29) 

where   k      , Cx,   and   €3    are the definitions applied to the case of a em 

rctating charg? distribution . (See page 12).    Solving the system of Eqs. 

(3-26) through   (3-29) for the constant of integration   a      ,  gives. 

em 

üö   p  qk       C/#A    )Y/ (k    P   )-^(A    )J' (k    P   )] o oM   ni       e  em   m     m o      m em m     mo 
4 A em 

(3-30) 

where 

^m=  IT- J^«     3l)H-'  ^-P^ em    K        m     em m m      m 
1 &h . J' (k      p^H^k    p!) 
em em m    m 

mc2     T    ,,_      n   ,„(1) 

k2      0,6, 
em 

J    (k^   Px)H^(k    px) 
m    em m    m (3-31) 
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In the same manner as before,   the radiation in this case is, 

* q232   m=00     {/<>(&    )Y' {m3   )-J (A    )j' (m8 )]3 

W  =  +_^c       v     m     eem   m c m em m c       (3_32) 

2eo        % a      A 
m=l em em 

Because of the complexity of an anisotropic medium as opposed 

to the previously studied case of an isotropir medium,   a closer study of 

the dependence of the radiated energy upon the dispersive properties of 

the plasma is necessary.    The dispersive properties of the plasma are 

determined by H   =/—r— .  the index of refraction for the propagation of a 

plane electromagnetic wave perpendicular to the direction of the magnetic 

field.    The index of refraction for the medium can be written more explicitly 

as follows: 2 2       2 
UL) ID      -   UU 

H3  =   1 . -E  E— (3-33) 
e 2     2        2        2 

0)       uu     -  UÜ     -  UÜ 
P        c 

The accompanying Fig.   2,   is a plot of   H2    versus   li/x     (where   uu   is now 

assumed) for a particular value of   UJ /Uü    .    A study of this figure reveals 

that the singularities occur at. 

JL = o   .   ^ =  /l+(^)2 (3-34) 
*c      V *c 

and   K     vanishes for, 
e 

JL .   U7^f±\ (3-35) 
JU        J  4       üü 2 
c      ~ c 

Furthermore,    K     is larger than unity for. 

_P < _L <  /l + ( J)2 (3-36) 
c c     If c 
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and is imaginary in the regions, 

0<-f</.U{J^   4;  JlTE  <iL</l+/!p.)2+l (3-37) 
m       ■> 4       uu 2    1»       'uu ID      "V 4    Xüü 2 

c c c c     ' c 

Again,  it may be said that Eq.  (3-33) zmd the above mentioned 

properties of the dispersion relation may be applied to the problem of 

a rotating ch?.rge distribution for   a!=m(D  .    Further,   assume that the 

angular frequency of the charge is equal to the cyclotron frequency, 

uu  =ii)   . (i. e.  the intensity of the magnetic field is the same both inside 

and outside the plasma).    In this case,  the range of frequency given by 

Eq.  (3-36) becomes, 

J2.  <m<Jl+{JZ.f (3-38) 

Due to the fact that 

i i-M:^)2 -^ < l (3-39) Uü ÜÜ       — 
o o 

it is possible to find only one value of   m   where   K      3      is greater than r ' em c a 

unity,  that is,  when the velocity of the charge distribution ie greater than 

the phase velocity of the electromagnetic field in the medium.    When this 

condition is fulfilled,   a process of Cerenkov radiation contributes to the 

already existent Bremsstahlung radiation for this harmonic.    It is to be 

noted that in the previously considered cases deeding with an Isotropie 

plasma,  Cerenkov radiation was not possible since the index of refraction 

H   ,   corresponding to *he ordinary opt:c mode of propagation,   was always 

less than unity. 

The discussion will first be confined to those frequencies which do 
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not lie in the neighborhood of the particular frequency for which Cerenkov 

radiation is possible.    Furthermore,  the charge distribution will again be 

considered to be moving with non-relativistlc velocities.    Therefore, 

H      ß   « 1   and Eq,  (3-32) becomes in this approximation. 

W  = 
a) q2   m.;00   m{m0   )am 

o 
1c I 

m=l ^m{m!)2 
1+(Pl/5o)        [T+lcrTei] (3-40) 

In order to see how the dipole resonance in the Isotropie plasma 

case is generated from the anisotropic plasma,  it is necessary to assume 

i-, Eq.   (3-40) that   the intensity of the magnetic field in the plasma is 

small.    Therefore,  the assumption that the charge distribution moves in 

synchronization with the cyclotron frequency will be dropped for the 

present.    Under this new assumption.  Equation (3-40) becomes, 

r 
tu q     m=oo m(mB   ) am (Pi/po)' 

2e 23™{m! )* 
m = l 

1 +• 

ÜÜ 

1 + 
Vmtr 

uu 
1 + 

.muu 

(3-41) 

UÜ 

where   is assumed much smaller than unity in the above equation. 
ID 

O 

Equation (3-41) indicates that a resonance may occur for the m 

harmonic when the following condition is satisfied 

th 

muu 
o 

uu 

muu 
(3-42) 
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Thus,   the effect of the magnetic field,   as far as the resonant frequency 

shift is concerned,  decreases with the order of the harmonics. 

The assumption of synchronized motion of the charge distribution 

with the cyclotron frequency will now be resumed in the subsequent dis- 

cussion.    The radiation will be analyzed for two spscific ranges of the 

ratio  of the plasma frequency to the cyclotron frequency. 

First,   it will be assumed that a   /uu   « l(underdense plasma^Then, 
P     o 

the index of refraction may be approximated as follows: 
'uu   ^ 

H2      . 1  - ■? r (3-43) em 1 -m 

which is effectively unity for all orders of the harmonics except the 

fundamental.    Thus,   for extremely non-relativistic velocities of the 

charge distribution,  the radiation is confined entirely to the fundamental 

frequency and  Eq.   (3-40) reduces to: 

T q  8 
W -f^ (3-44) 

o 

which is identical to free space. 

In physical terms,   if the index of refraction is effectively unity, 

then the electromagnetic radiation passes through the plasma undisturbed. 

The region of most interest is the frequency range where 

uu  /at >> 1.    In this region,  the index of refraction m iy be approximated p     o o 

as, 

(3-45) 
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It is evident froxnEquation (3-45),  or equivalently through an 

inspection of    Fig.   (2),  that the index of refraction possesses a singu- 

larity.    Obviously,  the conditions necessary for Cerenkov radiation to 

occur are satisfied for the particular harmonic in the neighborhood of 

the singularity.    However,  it must be recalled from the previous dis- 

cussion,  that a multipole resonance may also occur for a harmonic in 

the same frequency range.    It is therefore essential to demonstrate 

that the Cerenkov effect doer not mask the multipole resonance. 

Clearly,  if the multipole resonance occurs,   it must occur for the 

harmonic satisfying the relationship, 

m   =    I—M (3-46) 

m 
Equation (3-36) indicates that H2       =1 when  m = —*- .    Fur- M x em uu 

o 
thermore,   if Equation (3-33) is solved for the harmonic which makes 

K2      = - 1,  the result is approximately equal to Equation (3-46).    Hence, 
em 

the harmonic satisfying Equation (3-46) never occurs in the frequency 

range where Cerenkov radiation is possible. 

Resuming the investigation of the radiation in terms of the 

index of refraction, Equation (3-45),  it is apparent that Equation (3-32) 

permits a laree number of harmonics iur which   H is large in magni- r ^ em 0 0 

tude but imaginary.    Hence,  the necessary approximations upon the 
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Bessel functions here are, 

•m 
i        J    (m8  K      ) = I    (-imB  K      ) 

m        c  em        m c   em y -im3  H 
-imB  H 

e c  em        (3-47) 
c  em 

where it is understood that H        is now purely imaginary and I     is the em r 7 e> j m 

modified Bessel function of the first kind. 

An expression for W    ,  a typical harmonic in this frequency 
m 

range,   is obtained by substituting the approximation of Equation (3-47) 

intoEquation (3-32),  which gives, 

W 
muu  q2      (mß   f 

o c 
m 2e 

o Zm^m!^ 

kam 
Pi 

P 
(3-48) 

A comparison of Equation (3-48) with the corresponding free 

space case.  Equation (3-11) is relevant.    It is seen from this comparison 

that the radiation pattern of free space is modified by the factor 

s m 
[l - ( Px/ p   )       ]2 ,  for the case at hand.    This result complies with 

the physical situation.      Thus,   in the low frequency range,   the plasma 

is overdense and acts as a reflector of the electromagnetic radiation 

emitted by the charge distribution.    The modification factor is propor- 

tional to the scattering cross-section.    As the order of the harmonics 

increases,   the plasma appears less dense; the modification factor 

goes to unity; and the radiation pattern approaches that of free space. 
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Finally,  attention must be directed to the radiation produced 

by the single higher order harmonic in the vicinity of the singularity 

of H       .    Because this frequency may lie anywhere in the neighborhood 

of the singularity,  the plasma density and the magnetic field intensity 

may be adjusted to yield any particular frequency within this range. 

It must be noted,  that this is an extremely critical solution sine 

Equation (3-39) indicates that the index of refraction has a very sharp 

resonant condition.    Also,  it is seen from Equation (3-45) that K       is em 

extremely small for the subsequent harmonics beyond the singularity 

and, hence, the radiation contribution of these harmonics  is negligible. 

Furthermore,  for large values ot m,  it is apparent that a small change 

in K       leads to a lar^e chance in the argument mß K       of the Bessel em t © & c  em 

functions.    Thus,  the radiated energy at the m     harmonic becomes an 

extremely sensitive function of *      .If the average value of W     for ' em 0 m 

the range "        » 1 is taken for Bjuation (3-32),  the result is identical 

in form to Equation (3-48),  and will therefore not be repeated.    This 

result is not surprising since the only difference between the asymptotic 

forms of the Bessel functions,  for real or imaginary arguments,  is an 

oscillating part in time.    This distinction no longer exists after an 

averaging process is carried out. 

In summary,  let it be recalled that in the case of a simple 

plasma (isotropic and incompressible),  a multipole resonance is ex- 
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hibited ior the harmonic satisfying   m = 0)  / /2(D   when the charge 

moves at non-relativistic velocities.    If the charge velocity is greatly 

reduced,  the resonance becomes a singularity and the harmonic satisfies 

exactly the relation m = 1//?  UJ /ti) .    The influence of compressibility 
P    0 

upon these radiation chaiacteristics is negligible.    However,  even a 

weakly anisotropic plasma is sufficient to shift the multipole resonance. 

As the order of the harmonics increases,  this shift decreases.    Thus, 

the multipole resonance is effectively unchanged for a  sufficiently 

higher order harmonic.    Moreover,  this resonance is not masked by the 

Cerenkov effect which occurs for a singular harmonic of an even higher 

order in a neighboring frequency range.    Thereafter, the radiation con- 

tribution of the remaining harmonics is negligible. 
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SECTION IV 

THE CHARGE DISTRIBUTION INSIDE THE PLASMA COLUMN 

It is now desirable to consider the effect of moving the charge 

distribution onto the plasma coluir.a.    That is,  to set the radius of the 

orbit o    of the charge distribution equal to the radius pj  of the plasma 

column.    It is seen in Eq.   (3-3 2) that,  in this limit,  the form of the 

radiation expression remains unchanged.    Consequently,  it is concluded 

that a dipole resonance also occurs for the charge    istribution when it is 

located on the periphery of the column.    Moreover,  this resonance may 

still be possible if the charge distribution is moved inside the plasma 

column.    The physical implications of this speculation can be better 

understood through a complete solution for the radiation field of a 

rotating line charge immexsed in a plasma column.    Thus the method 

as adopted in the previous chapter,  of investigating independently the 

influence of both compressibility and anisotropy upon the radiation 

characteristics of the rotating charge distribution will be repeated.    The 

question of the physical mechanism of the rotation of the charge distribu- 

tion then arises in the isotropic plasma case.    A new physical configuration 

must be introduced to answer this question.    Consider the charge distribu- 

tion to be located within a thin vacuum gap, bounded by two concentric 

cylindrical regions of plasma.    A magnetic field intensity,  different from 

that in the plasma,  can be maintained in this gap.    The radiation field, 

computed in the ideal situation (that is,  the charge distribution immersed 

in a uniform isotropic plasma column) is then valid for wavelengths of 

the electromagnetic radiation much greater than the thickness of the gap. 

Since the effects of compressibility and anisotropy will be considered, 

it is expedient to formulate the problem in the most g' neral case of a 

compressible anisotropic column.    This necessitates an inspection of 
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Eqs.   (2-33) and (2-34),   which may be uncoupled in the same manner as 

that technique employed in the previous problem of the charge distribution 

located outside the plasma.    In this case,   the solution for the longitudinal 

field components is, 

1 
(k3     -k*     ) 

sm    -cm 
{(ks    -k3,    )b.    J    (k      D)-(ks    -ka    )a.    J    (k      P)1;D<P 
I   om    i,m    im  m    /m om     sm    im  m    sm    J o 
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N     - / (ks     -k^     ) lv'xom  "-t,m/L"im''mx^mM/  "im^m^-tm^ 

m     \      sm    -cm 

(k2     -K2     )[a,/   J    (k      oHa."    Y    (k      p)]l   ;   p   <p<o1 om     sm      im m    sm im   m    sm      Jo1 
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q a) 
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(k      -k,     )  l  im m    sm im  m    -tm    J o 

sm    tm 

(4-1) 
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(4-2) 
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The transverse field components,   obtained in the same manner as 

in Section Two,  are 

-q. m  uu ai 

e  (k3    -k3.   ))aim 
o    sm    tm 

(k3     -k3^ ) 

, 2"; J (k   o)+   . 
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The appropriate boundary conditions in terms of the total field components 

are. 
p   + 6 Mo 
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=   0 
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He     -   Hi' 

=    0 

;  P =Pi (4-6) 

IT o 

The above conditions,  when written in terms of the harmonic com- 

ponents,  become, 

[H    1 [H    1 ^ ^ 
L   zmJi' - L   zmJi = "iTf 

[ cpmj.' - [  cpmj. = 0 

["pmj./ - ["pmj. = 0 

;   P = PO      (4-7) 

[H    1 [H    1 [   zmj -       I    zmj.       =       0 

U 
pm 

;     p = Pi       (4-8) 

The above equations result in the following system of equations, 
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With this in mind,   the analysis will begin with a study of the 

radiation pattern for the case of an isotropic,   incompressible plasma, 

Eqs.   (4-9) through (4-15) reduce to, 
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If Eqs.  (4-16) through (4-19) are solved for the constant of integration 

applicable outside the plasma,  the result is, 
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A om 

(4-20) 

Direct substitution of this result into Eq.   (2-54),   gives, 
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(4-21) 

s the index of refraction for the ordinary 

electromagnetic mode of propagation in an Isotropie plasma. 

Again, interest is confined to the case of extremely non-relativistic 

velocities of the charge distribution since a multipole resonance is possible 

here.    Using the approximations of Eq.  (3-8) in Eq.  (4-21),   gives. 
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2U) q2   m"00    m(m0   J2 m 
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m-i 

(4-22) 

Thus,  the multipole resonance is clearly evidenced in Eq.  (4-22).    A cal- 

culation analagous to the one conducted in Section Three,  for higher 

velocities of the charge distribution,   results in the same conclusions. 

Precisely,  the dipole singularity is replaced by a maximum in the 

radiation for the same frequency given by Eq.  (3-14),    The radiation 

expression for the fundamental frequency now is. 
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Furthermore,   a numerical calculation extending these results to include 
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relativistic velocities of the charge distribution is depicted in Fig.   3. 

A huge maximum is evidenced for frequencies shifted slightly from the 

dipole resonance condition.    Hence,  the conclusion that the dipole 

resonance phenomenon is maintained for all velocities of the charge 

distribution is applicable also to the case of the charge moving inside a 

plasma column. 

For completeness,   the effects of compressibility,   if any,will be 

studied.    Here,  the conditions [Eqs,   (4-9) through (4-15)] resulting from 

the boundary conditions simplify to, 
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k2 

om 
a.'   J    (k      oj+a!'   Y    {<      pj 

im m    om im   m    om * 
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Simultaneous solution of Eqs.   (4-24) through (4-30),  for   a      .   gives. 
em 

I    u^k      D 
o om oT / 

a' 

i      = ~— 
em    2TT 

J'(k      o)J'(k      Ci)-7 t:-^J_(k     P^)J    (k      ox) 
a2        m    om o   m    am i    k      pxa"   m    am o   m    om 
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A 
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(4-31) 

By virtue of Eqs.   (2-54) and (4-31),  the radiation is. 

ur 

W   =   + 
2 yu q3   mfoo 

o \ 1 
e ri2 

\ 
L 

m = l 

mH      S  J' {m3   K      )J ' (m 8  K     Pi/p   ) om cm        c   om    m        a om    /   o 
ni 

A      A 
am am 
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—Z E }—J  (m8   H      )J    (m0   H      px/p   ) 
rnQ   K       nj /p      m a  om    m        c   om    /   o 

a  om    /  o 

L: I 
am am 

It sufficies to say:   if it is assumed tbat the charge distribution 

moves with supersonic,   n< n-rclativistic velocities (that is,    8    -'> 1,   and 
a 
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and   S   « 1) and the appruximations of Eqs.   (3-B) and (3-25) are employed, 

Eq.   (4-32) reduces to Eq.   (4-22) identicall/.    Thus,   the influence of com- 

pressibility upon the radiation characteristics is to have them effectively 

unchanged. 

It is now desirable to consider the influence of an impressed static 

magnetic field upon the radiation produced by the charge distribution moving 

in an incompressible plasma.    This necessitates that Eqs.   (4-9) through 

(4-15) be rewritten as, 

a.'   J    (k       p   ) + a"    Y    (k      n   ) 
im  m    em   o        im   m    em   o 

-a.    J    (k      r   ) 
im  m    em   o 2n 

(4-33) 
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im m    em  o      im   m    em  o 

+ k 
em 

a.'   J' (k      p   ) 
im m     im  o 

+ a"   Y' (k      p   ) 
im   m    em  o 

a      H(l)(k    pj - 
em   mm 

a      H(l)  (k    pj - ,s em   mm k3 

m £. 
a.    J    (k      p   ) + k      a.    J ' (k      p   ) 

o ei       im m    em  o        em  im m    cm  o 
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a.'   J    (k      D1) + ar    Y    (k      Dl) 
im  m    em  x im   m    em 

=   0 
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em 

m C2 
a.'  J    (k    p1)+a.//   Y    (k      Pi) 

im mm im   m    em 

=  0 

(4-34) 

(4-35) 

+ k 
em 

a'   J' (k      pj+a"    Y    (k      ri) 
im  m    em im   m    em 

(4-36) 

Solving this set of equations for   a       ,   gives 

m       e 
uu p   q 

o  o 
i =   -r :— 
em        2r1p1k 

em  o 
J    (k      r   )+J' (k      P   ) 
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em 
Ä 

em 

(4-37) 

The radiation for this case is then. 
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(4-38) 

For non-relativistic velocities of the charge,   this equation    reduces to, 

2uu  q^ mlmS   )2m 

m = l 
22m{m!)? [l + iex-Cg)]' 

(4-39) 

It may be assumed that even a weak magnetic field is sufficient to shift 

the multipole resonance for the lower order harmonics,   since this is 

what occurs when the charge distribution moves outside the plasma column. 

A necessary approximation,  that,    —*• « 1,  in Eq.   (4-39) results in the 
uu 

following simplification. 

2x  q2   mr00 m(m8   )?m 

w = —sl    y     £  
€o ",     ZsmimOS 

m-1 

(4-40) 

Inspection of Eq.  (4-40) affirms the above mentioned assumption. 

Adjusting the intensity of the magnetic field to be uniform through- 

out all space implies that the charge moves in synchronization with the 

cyclotron frequency   (uu   = uu  ).    If it is then assumed that   -^ « 1 ,  the index 
o      c ■JU 

of refraction may be approximated according to Eq,  (3-43),  and the resulting 

radiation is equivalent to free space,  Eq.   (3-U ),  as in the case of the 

charge distribution moving outside  the plasma.    Thus,  when the influence 

of the plasma upon the radiation characteristics is small,  it matters little 

whether the charge moves inside or outside the placma because the radiation 

characteristics are identical to free space. 

\gain,   the region of most interest occurs when the index of refraction 
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of the medium may be approximated according to Eq.  (3-45).    Of course, 

the Cerenkov effect,  here too,  does not mask the multipole resonance 

that exists for the higher order harmonic.    Moreover, the radiation for a 

typical lower order harmonic,    W    ,    may be obtained using the approxi- 

mation of Eq,   (3-47).    The result is, 

2m'X' qs32(mB   Px/p   )p™ 
W      = 2_E <LJ_2  (4.4D 

m e  2^(m!)2K2 
o em 

Finally,  the average radiation of the single harmonic in the 

neighborhood of the singularity of the index of refraction is identical in 

form to this equation. 

An interpretation of these results can be obtained through a study 

of the radiation characteristics for the charge distribution moving in an 

infinite plasma medium. 

It is now expedient in this section to consider all the previous cases 

in the limit of   pj, -oo.    That is,  the plasma medium permeates throughout 

all space.    Mathematically,  then,  the boundary conditions at   QI    are 

eliminated;   the boundary conditions at   p     are retained intact.   Since o 
the present discussion of an unbounded plasma will be used merely as a 

means of comparison with the bounded plasma cases,  only the more 

pertinent equations will be stated. 

In the case of a simple plasma (incompressible and Isotropie), 

the radiation expression reduces to, 

UU   q^2 

W   =   -~       )     mj '? (m8   K      ) (4-42) 
2 c L m c   om 

o 
m 

where the sum is extended over those values of   m   for which   K is real. om 
If the charge distribution is assumed to move at very small veloc- 

ities;   then Eq.   (^»-42) converges to Eq.  (3-11).    Thus,  the radiated energy 

converges geometrically from the fundamental frequency. 
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When it is assumed that the charge distribution moves at 

r^lativiatic velocities,  0    ~ lf  the energy does not converge rapidly 
c 

around a single harmonic but is distributed over a wide range of fre- 

quencies. 

In order to analyze the radiated spectrum now, those Be?sei 

functions whose arguments and orders are both large and comparable 

must be retained in the energy expression.    For this purpose, the fol- 

lowing relation is employed. 

1 T   (mß ) - - men 

r2*(i-aj^1 
c 

L   sV c 

K 
2sm(l -8  )a 

c 

38^ 
(4-43) 

Equation (4-43) indicates that the argument of   K^   may be large or 
3 

small depending upon the relative size of   m.   Therefore, Eq. (4-43) mus* 

be approximated for two ranges of   m. 

1 <c m « m m » m (4-44) 

where 

m    =   3/2 (l-e3)8 

o c 

In the first range of approximation, the energy expression reduces 

to. 

W 
m ■Ig^i--' 2^rs 

(4-45) 

for the   m      harmonic.    The energy is seen to decrease very slowly with 

respect to increasing harmonics. 
th 

In the second range of   m   the   m      harmonic of the radiation is 

«iven by' -m/m 

W 
m 

& 

(4-46) 

The radiation for extremely high order of harmonics decays rapidly. 

Consider now the radiation from the line charge in a compressible 
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Isotropie plasma. 
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,,</1ym8cKoxW,/Po, 

-J    (m8 H      p/p  )Y    (mg K      p/p  ) 
m       c  om /   o     m       a om / o 

(4-47) 

and again it is understood that the first sum is for real values of   K only. 
om 

The appearance of a radially dependent term in this result is not 

surprising since part of the radiated energy is converted into mechanical 

energy of the medium.   In order to determine the total powe*  passing through 

a cylinder of unit height at an arbitrary radius   p > p    , the mechanical 

work done by the pressure must be included along with the radiated energy. 

Adapting the procedure for calculating the radfated energy to cal- 

culating   P, the mechanical energy results in, 

|i at qVp3      ^    J9 (me * 
p -     o o     p o     5r      m       a om 

28s 

c I 
m 

mH* 
om 

__ m=oo 

4V €     o p       £_.     H       m       a om   m     c om i m     a om /  o  m      c om/ o 
o      r ,      om I 

m=l 

-J    (m0 K     p/p  )Y    (me  H     p/p  ) 
m       c om / o    m       a om /  o l 

(4-48) 

A superposition of Eqs.  (4-47) and (4-48) results in an expression for 

W  , which is just the work done by the electric field on the charge. 

W    = 
U) q882 

oj1    c 
2e I m 

mJ^ntf K     )+ m       c om 
o o 

2es 
c 

I m 

J8 (m8 x      ) m       a om 
mn* 

. (4-49) 
om 
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the unspecified sums having the same meaning as before. 

This result is a specific example of a more generalized Poynting 

theorem (see reference 20) which is, 

|i € 

J ^ [uNf)+ Pü3dv= -j ~[-Yö8+ i~#a+m^jia+p]dv+Ii*5dv <4'50) 

V V 

That the stored energy is time invar lent for the case at hand is due 

to the fact that the fields created by the moving charge distribution are 

carried along with the charge.    Therefore, the total flux of energy passing 

per second through a cylinder of unit height enclosing the charge cannot 

change with time. 

Returning to the expression for the radiated energy,  Eq. (4-47), a 

detailed analysis for supersonic, non-relativistic velocities (that is   0    » 1, 

8    « 1) reveals that the energy is primarily electromagnetic in nature, 
c 

Therefore, the previous analysis for the incompressible plasma may be 

carried over completely. 

It is desirable to calculate the total electric charge induced in the 

plasma per unit length in the   s direction.    The density profiles in the two 

cylindrical regions located about   p     are; 

n = 

quu3 m=Qo 
M -imu) T o 

n    +iT^-T  )       H   <k     P  )J   (k     P)« ;P<P o        4q a3   £• m   am o   m   am 
m=-oo 

quo8 

.E. 

m=oo 

n   + i .       « o       4q a* I 
. -jmu) T 

J    (k      p  )HW(k      p)e 0   ; p > p^ 
m   am o    m   am o 

m=-oo 

The electric charge density is given by, 

(4-51) 

P s O1 -") o   o 
(4-52) 

Therefore, the total electric charge induced in the region   p < p     is, 
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It is seen from Eq. (4-53) that the only non-vanishing term in the sum is 

m = 0.    Then, 

Ttquj  p 

U-  = .i _EH(IMP )     PJ   (i-Ep)dp=-~T^^J1(i-^p iHHi^Pj < 2a8     oaoJ      oa 2a        iaooao 

(4-54) 

Similarly, the total electric charge induced in the region   P > P     «i 

TTqüü   p U) # \     W 

> 2a o      a     o a     o 
(4-55) 

The total electric charge induced in the plasma is, 

P   = 2a 
J (i ^p  )Hll)(i ^p  ) -J^i -^p  ) H^i -*p ) 
oao ao       *      a     o      o      a     ol 

J   (i^Ep   )H(l,'(i^p)-J 
o      a     o      o       a     o      o 

(4-56) 

Consequently, the total system of plasma and moving electric charge 

remains electrically neutral. 

Consider now the radiated energy from the line charge in an 

incompressible, anisotropic plasma. 

W 
ID q282 
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2c I m 
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—Sa— J    (mß K     * J ' (m8 K      ) 
9  H      Ci   m       c em     m       c  em 

JE 
i c em 

(4-57) 

and the sum is extended to only real values of   K em 
For simplicity, it will again be assumed that   w =w ,    Then, if 

o    c 
it is further stipulated that    m  h     «  1, the index of refraction may be 

approximated by Eq.  (3-43).    The equivalent   H     8     for the plasma rr em c 
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medium can be greater than unity for the fundamental frequency only. 

The energy radiated from the first line of the spectrum is, 

W, 
ü q« 

o 

2e K ei 
SK    ) 3X{B  K .)+Ji'{8^H   ) c &. c  ei c  ei 

2 w qa 

2 c     c c ei o 
(4-58) 

The index of refraction is, 

(4-59) 

and converges to {2   in this approximation.    Obviously,  the condition for 

Cerenkov radiation  K    8   > 1   exists only if the charge distribution moves 

at relativistic velocities.    Therefore, if it assumed that the charge dis- 

tribution moves with an extremely low velocity   3    «1, the plasma behaves 

essentially as does free space.    The energy radiated is then confined 

entirely to the fundamental harmonic and agrees with Eq.  (3-44). 

It is now desirable to consider the frequency range where 

ah   »1.   In this region,  the index of refraction may be approximated as 

Eq.  (3-45).    It is apparent from this equation that nu radiation is possible 

for small orders of harmonics, and radiation only begins to become pos- 

sible for those higher order harmonics in the neighborhood of the singularity 

of the index of refraction.   Note that, in the finite plasma case, the radiation 

was not restricted to frequencies near the singularity.    The first frequency 

where radiation is possible may lie anywhere in the neighborhood of the 

singularity, and both the plasma density and magnetic field intensity may be 

adjusted to yield any particular frequency within this range.   It must be 

recalled that this is an extremely critical solution since,  as stated before, 

Eq.  (3-39) indicates that the index of refraction has a very sharp resonant 

condition.   Also,  once again,  Eq.  (3-45) states that   K is extremely 

small for the subsequent harmonics beyond the singularity.    The radiation 

contribution of these harmonics is then vanishingly small.    Directing at- 

tention to the radiatioa produced by the single harmonic in the vicinity of 

the singularity of  K      . and using the asymptotic approximations for the 

Besscl functions in the expression for the radiated energy,  gives, 
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m 2 n e K o em 
(4-60) 

where it is understood that the above equation is the average value of the 

energy for the   m      harmonic.   A resemblance of this equation   with 

Eq. (4-41) is attributed to the fact that, in this approximation when the 

plasma is extremely overdense, it is immaterial whether the plasma is 

finite or infinite in extent. 

In summary, it may be said that, if the plasma frequency is much 

larger than the cyclotron frequency, the radiation field is confined entirely 

to a single harmonic which resides in the vicinity of the singularity of the 

index of refraction.    The magnitude of the velocity of the charge distribution 

is immaterial since it is always possible to select the order of the harmonic 

such that the index of refraction is much greater than unity. 

The radiation produced by the rotating charge for the more general 

case of a compressible, anisotropic plasma will now be studied.   In tills 

case, the coupled Eqs. (2-33) and (2-34) are uncoupled as in Sections Two 

and Three.   In this case, the solution for the longitudinal field components 

becomes, 

q tu 
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Application of the boundary conditions results in, 
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(4-63) 

For the sake of simplicity, an investigation of only the expression for the 

total power will be conducted.   This has been shown to be equ?1 to the work 

done on the charge by the electric field.   See Eq. (4-50). 
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m jm   sm    |m 

where the first sum is extended to values of  m   for which   k        is real sm 
and the second sum is extended to values of  m   for which  k        is real. ^m 
The virtue of the technique indicated in Section Two can now be realized, 

since a direct substitution of Eq.   (2-30) into (4-64) results in. 
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(4-65) 
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Now, Eq.  {4-65) may be compared with Eq,  (4-49).   It is then evident that 

the effect of the coupling of the modes of propagation is to prohibit pro- 

pagation of the electromagnetic mode, and to introduce a lower limit in 

frequency in the propagating acoustic mode.    These results are entirely 
5 

consistent with Tuan and Seshadri's paper     where the same mode of pro- 

pagation is excited. 

It suffices to say, that for supersonic velocities   (0    » 1) of the 

charge distribution, the radiated spectrum decreases with increasing 

order of the harmonics. 
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SECTIOH V 

CONCLUSIONS 

The spectral distribution of the radiated energy of a line charge 
rotating both inside and outside a plasma column has been analyzed. 
The analysis was conducted to include the effects of compressibility and 
anisotropy of the plasma upon the radiation characteristics of the charge 
distribution. 

If, in the incompressible isotropic plasma case, the charge moves 
at non-relativistic velocities, the plasma exhibits a resonance of a multi- 
pole type for harmonics of the angular frequency of rotation of the charge 
which satisfy the condition  m = — • —£- .   As the charge velocity approaches 

42        o 
zero, the resonance becomes a singularity for those harmonics which satisfy 
exactly the relation  m =  -=-   —*--   .    The effect of compressibility is to 

42       Wo 
leave the radiation field essentially unchanged. 

A plasma which is slightly anisotropic is sufficient tc shift this 
multipole resonance for the lower order harmonics.    These harmonics 
correspond to reflected radiation when the charge moves outside the plasma; 

the charge moving inside the plasma sees an impervious infinite plasma 
medium. 

In contrast, the plasma can still experience this multipole resonance 
for a sufficiently higher order harmonic.    Furthermore, in the frequency 
range just above this multipole resonance, Cerenkov radiation contributes 
to the Bremsstahlung radiation for a single harmonic in the neighborhood 

of the singularity of the index of refraction. 

If the plasma becomes highly anisotropic, the radiated energy of 
the charge is identical to free space for non-relativistic velocities of the 

charge. 

Finally, the radiation characteristics are examined in the limit of 
an unbounded plasma.   In the incompressible isotropic plasma, the radiation 
characteristics are similar in nature to the free space characteristics. 
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Moreover,  compressibility is o£ no influence on these characteristics 
which are not unlike the radiation characteristics of the uniaxial plasma 
case.    In the weakly anisotropic plasma, the radiation was confined to 
the singular harmonic near the resonance of the index of refraction. 

In the more complex situation of a compressible anisotropic 
plasma, the affect of coupling is to prohibit the electromagnetic mode 
from propagating, and to introduce a lower limit in frequency of the 

propagating acoustic mode. 
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APPENDIX 

An explicit evaluation of the uncoupling of equations (2-33) and 
(2-34) will now be conducted.   First, the following abbreviated notation 

will be introduced.   Thus, 

k9 

no c 
-    £S2 I o p   om i 
' TITK     c" "äPTT3    I Ho c \ am/ 

(A-l) 
q a8c8k« aÄaac8k»      /ma«8   k8 «»\ 

A« s      0     m   om Bo  =    ^0      ,  om ( --2 -^S - -2. ] Aa JTO^ *      Ö8 üTw7 \    ca      Tc^"     IT I c p c p \ om / 

and the differential operator,   J),   is defined as, 

■*-f £"■£'--f- (A■2, 

Consequently, equations (2-33) and (2-34) can be written as, 

(A1i>+Bx)Hzm     i>Nm   =   0 (A-3) 

(A8^ + B8)Nm   -^Ham= 0 (A-4) 

Since the above equations are linear, a solution which is a linear combina- 
tion of  H        and   N       nay be assumed.   Specifically, zm m 

or equivalently. 

^   =   N    +aH m zm 

tj»-  =   N      + bH ^^ m zm 

m b-a 

(A-5) 

(A-6) 

H       =   JäJLiL 
zm b-a 
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Direct substitution of equation (A-5) into equations (A-3) and (A-4) 

yields, 

[(b+AU^+Ba]^  -  [(a+Ai) ^+Bi] ^   =   0 (A-7) 

[(bA8+l)^+bB3]^ -[UAs+l)^+aBa]4^  =   0 {A-8) 

Multiplying equation (A-7) by   (aAg+l), and equation (A-3) by (a+A!), 

and adding the results gives, 

lM£»]h = o (A■9, 
where the following condition has been assumed, 

{aAg tllB,  - (a+Ai )aB2   =   0 (A-10) 

a sinr.ilar manipulation results in, 

where the following condition has been assumed, 

(bAs+^Bi  -(b+A^bBg   =   0 (A-12) 

It is clear from a comparison of equations {A-10) and (A-12) that the assumed 

constant a and b have been made to satisfy the same equation. In particu- 

lar, 

^b  =     A8B^-A1B^lf(^B?-AgB1)
8 + 4B1B8 (A.13) 

Substitution of equations 'A-l) into equation (A-13) gives. 

k»     -k2 

Qu;       sm 
q cu no c 

(A-14) 

b   =        om  - lm (A-15) 
^o c 

Finally,   substitution of equations (A-14) and (A-l) into equation (A-9); and 

equations (A-15) and (A-7) into equation (A-U) yields the following Bessel 

equations, 
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i^«"^^ m 
rn )»h  ■ o (A-16) 

i^'^^lr*'^-* (A-17) 

The specific solutions of equations (A-16) and (A-17), applicable to the case 
of the charge distribution rotating outside the plasma column, are, 

**   s   bimJm<kimP> 

P<Pi (A-13) 
^   =   aimJm(ksmP> 

since the Neumann function must be rejectsd because it becomes infinite 
at  p s 0.   Moreover, the specific solution of equations (A-16) and (A-17), 
for the case   of the charge distribution moving inside the plasma column 

in the specified regions, are, 
bimJm<klm^ 

•k * 

^ = 

b;mJm<klm^+bimYm<kim«» 

Wm^smrt 

im m   sm im   m   sm 

p< Po 

Po <pl <P1 

p< Po 

Po <p< Pi 

(A-W) 

The longitudinal field components, corresponding to the cases of (A-18) and 
(A-19), are found from equation (A-6), and the results are in the body of 
this paper.   [Equations (2-35), (2-36). (4-1), and (4-2)]. 
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FIGURE   I 
COUPLED INDICES OF REFRACTION 

OF A COMPRESSIBLE, MAGNETO* PL ASM A 
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FIGURE 2 
INDEX OF REFRACTION VERSUS FREQUENCY 

FOR A PARTiCULAR VALUE OF  £*- 
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FIGURE  3 

RADIATION BY LINE CHARGE INSIDE PLASMA COLUMN 

(WHERE /»   /»0« 1/2. «c«0) 
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FIGURE 4 
RADIATION BY LINE CHARGE OUTSIDE PLASMA COLUMN 

(WHERE />, //»0«l/2, «c -0) 
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